ORIGINAL PAPER
Chattering analysis of an electro-hydraulic backstepping velocity controller
 
More details
Hide details
1
Department of Physics, University of Sciences and Technologies of Masuku, Gabon
 
2
Department of Mechanical Engineering, University of Sciences and Technologies of Masuku, Gabon
 
3
Department of Electrical engineering, University of Sciences and Technologies of Masuku, Gabon
 
These authors had equal contribution to this work
 
 
Submission date: 2023-10-04
 
 
Final revision date: 2023-12-01
 
 
Acceptance date: 2024-01-17
 
 
Online publication date: 2024-03-26
 
 
Publication date: 2024-03-27
 
 
Corresponding author
Honorine ANGUE MINTSA   

Department of Mechanical Engineering, University of Sciences and Technologies of Masuku, Mbaya, BP 941, Franceville, Gabon
 
 
International Journal of Applied Mechanics and Engineering 2024;29(1):36-53
 
KEYWORDS
TOPICS
ABSTRACT
This paper focuses on the chattering analysis in a backstepping controller used to drive an electro-hydraulic servo system. The chattering phenomenon, well known in sliding mode control, strongly reduces operating performance while causing premature wear of the system. Four cases are studied to highlight the factors influencing the chattering in the backstepping control. In the first case, the effect of the unmodeled fast servo valve dynamics is analysed by comparing a reduced-order backstepping controller with a full-order controller. The second case analyses the sensitivity to the tuning gains of the backstepping controller. The third case emphasises the influence of the parameter of sign function approximation. The last case analyses the sensitivity of the parameter of the time derivative of the virtual controls. The simulation results in the Matlab/Simulink show that the chattering is mitigated by an appropriate gains tuning but above all an appropriate calculation of the derivatives of the virtual controls, particularly for high-order systems.
REFERENCES (29)
1.
Shaer B., Kenné J.-P., Kaddissi C. and Fallaha C. (2018): A chattering-free fuzzy hybrid sliding mode control of an electrohydraulic active suspension.– Transactions of the Institute of Measurement and Control, vol.40, No.1, pp.222-238.
 
2.
Slavov T., Mitov A. and KralevJ. (2020): Advanced embedded control of electrohydraulic power steering system.– Cybernetics Information Technologies, vol.20, No.2, pp.105-121.
 
3.
Binh N. T., Tung N. A., Nam D.P. and Quang N. H. (2019): An adaptive backstepping trajectory tracking control of a tractor trailer wheeled mobile robot.– International Journal of Control, Automation and Systems, vol.17, No.2, pp.465-473.
 
4.
Li S., Yang Z., Tian H., Chen C., Zhu Y., Deng F. and Lu S. (2021): Failure analysis for hydraulic system of heavy-duty machine tool with incomplete failure data.– Applied Sciences, vol.11, No.3, p.1249.
 
5.
Zhao X., Li L., Song J., Li C. and Gao X. (2016): Linear control of switching valve in vehicle hydraulic control unit based on sensorless solenoid position estimation.– IEEE Transactions on Industrial Electronics, vol.63, No.7, pp.4073-4085.
 
6.
Kumawat A. K., Kumawat R., Rawat M. and Rout R. (2021): Real time position control of electrohydraulic system using PID controller.– Materials Today: Proceedings, vol.47, pp.2966-2969.
 
7.
Merritt H. E. (1967): Hydraulic Control Systems.– John Wiley & Sons Inc.
 
8.
Mintsa H. A., Venugopal R., KenneJ.-P. and Belleau C. (2011): Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty.– IEEE Transactions on Control Systems Technology, vol.20, No.4, pp.1092-1099.
 
9.
Slotine J.-J. E. and Li W. (1991): Applied Nonlinear Control.– Prentice hall Englewood Cliffs, NJ, vol.1.
 
10.
Sun C., Dong X., Wang M. and Li J. (2022): Sliding mode control of electro-hydraulic position servo system based on adaptive reaching law.– Applied Sciences, vol.12, No.14, p.6897.
 
11.
Zheng X. and Su X. (2021): Sliding mode control of electro-hydraulic servo system based on optimization of quantum particle swarm algorithm.– Machines, vol.9, No.11, p.283.
 
12.
Krstic M., Kokotovic P.V. and Kanellakopoulos I. (1995): Nonlinear and Adaptive Control Design.– John Wiley & Sons, Inc.
 
13.
Tri N. M., Nam D. N. C., Park H. G. and Ahn K. K. (2015): Trajectory control of an electro hydraulic actuator using an iterative backstepping control scheme.– Mechatronics, vol.29, pp.96-102.
 
14.
Ghazali R., Sam Y. M., Rahmat M. and Hashim A. (2010): Position tracking control of an electro-hydraulic servo system using sliding mode control.– in 2010 IEEE student conference on research and development (SCOReD), pp.240-245: IEEE.
 
15.
Kaddissi C., Kenne J. P. and Saad M. (2007): Identification and real-time control of an electrohydraulic servo system based on nonlinear backstepping.– IEEE/ASME Transactions on Mechatronics, vol.12, No.1, pp.12-22.
 
16.
Utkin V. and Hoon L. (2006): Chattering problem in sliding mode control systems.– in International Workshop on Variable Structure Systems, 2006. VSS'06., pp.346-350.
 
17.
Has Z., Rahmat M. F. A., Husain A. R. and Ahmad M. N. (2015): Robust precision control for a class of electro-hydraulic actuator system based on disturbance observer.– International Journal of Precision Engineering Manufacturing, vol.16, pp.1753-1760.
 
18.
Ghani M. F., Ghazali R., Jaafar H. I., Soon C. C., Sam Y. M. and Has Z. (2022): Improved third order pid sliding mode controller for electrohydraulic actuator tracking control.– Journal of Robotics and Control, vol.3, No.2, pp.219-226.
 
19.
Long L., Jian-Yong Y., Jian H., Da-Wei M. and Wen-Xiang D. (2015): Tracking control for electro-hydraulic positioning servo system based on disturbance observer.– Acta Armamentarii, vol.36, No.11, p.2053.
 
20.
Feng H. Song Q , Ma S., Ma W., Yin C., Cao D. and Yu H. (2022): A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system.– ISA transactions, vol.129, pp.472-484.
 
21.
Won D., Kim W., Shin D. and Chung C. C. (2014): High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems.– IEEE transactions on control systems technology, vol.23, No.2, pp.787-795.
 
22.
Tran D. T., Ba D. X. and Ahn K. K. (2019): Adaptive backstepping sliding mode control for equilibrium position tracking of an electrohydraulic elastic manipulator.– IEEE Transactions on Industrial Electronics, vol.67, No.5, pp.3860-3869.
 
23.
Chen L.-H. and Peng C.-C. (2017): Extended backstepping sliding controller design for chattering attenuation and its application for servo motor control.– Applied Sciences, vol.7, No.3, p.220.
 
24.
Pilloni A., Pisano A. and Usai E. (2012): Parameter tuning and chattering adjustment of super-twisting sliding mode control system for linear plants.– in 12th International Workshop on Variable Structure Systems, pp.479-484.
 
25.
Castillo I. and Freidovich L. B. (2020): Describing-function-based analysis to tune parameters of chattering reducing approximations of Sliding Mode controllers.– Control Engineering Practice, vol.95, p.104230, 2020/02/01/ .
 
26.
Beudaert X., Franco O., Erkorkmaz K. and Zatarain M. (2020): Feed drive control tuning considering machine dynamics and chatter stability.– CIRP Annals, vol.69, No.1, pp.345-348.
 
27.
Kuchwa-Dube C. and Pedro J. O. (2022): Chattering performance criteria for multi-objective optimisation gain tuning of sliding mode controllers.– Control Engineering Practice, vol.127, p.105284.
 
28.
Mobayen S. (2015): An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems.– Nonlinear Dynamics, vol.82, No.1-2, pp.53-60.
 
29.
Eltayeb A., Rahmat M. F. A., Basri M. A. M., Eltoum M. M. and El-Ferik S. (2020): An improved design of an adaptive sliding mode controller for chattering attenuation and trajectory tracking of the quadcopter UAV.– IEEE Access, vol.8, pp.205968-205979.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top