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This paper analyzes the chaos and coexistence of attractors of a heavy gyroscope with parametric nonlinear 
damping. After having found the mathematical model of the dynamics, we used the multiple scale technique to 
look for secondary resonances. Subsequently, the amplitude of the harmonic oscillations is determined based on 
the harmonic balance technique. Impact of each of the system parameters is analyzed on the amplitudes and 
frequency of resonances. By applying order four Runge-Kutta algorithm, the different dynamics of the gyroscope 
are determined and analyzed. Subharmonic resonances and harmonic oscillations are derived from the limited 
development the basic equation solved numerically to investigate the dynamics and coexistence of the gyroscope 
attractors. The analysis of impact of each parameter on the existence and disappearance of coexisting attractors is 
done numerically.  
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1. Introduction 

 
 Studying gyroscope behavior, a captivating field of nonlinear dynamics, is rooted in a rich history of 
more than a century. Gyroscopes, thanks to their ability to model a multitude of physical systems in fields as 
varied as navigation, aeronautics and space engineering, have attracted the attention of numerous researchers 
over the decades [1]. This fascination with gyroscopic movements has encouraged several authors to deepen 
the study of their dynamics. For example, in 1996, Ge and Chen [2] as well as Ge et al. [3] explored the 
nonlinear dynamics of a heavy symmetrical gyroscope mounted on a vibrating base, highlighting the chaotic 
movements resulting from the gyroscopic system subjected to linear damping. In 2001, Tong and Mrad [4] 
examined the movement of a symmetrical gyroscope, under the effect of a basic vertical harmonic excitation, 
without taking into account certain parameters. The various works have demonstrated that gyroscopes are not 
spared from the complex phenomena common in nonlinear dynamics, such as nonlinear resonances, chaos, 
coexistence of attractors, amplitude jumps, hysteresis and nonlinear parametric damping [5]. These 
phenomena, which manifest themselves in a wide range of mechanical [6-10], biochemical [12], and industrial 
systems, make the prediction of the position and velocity of these systems in time and space particularly 
difficult [13-34].  
 Faced with these challenges, various control methods are employed in nonlinear dynamics, including 
active, semi-active, passive control, as well as feedback control [5-34]. For example, recently, the passive 
control of chaos and multistability of a non-linear damped gyroscope was achieved, demonstrating that these 
phenomena are better controlled when the gyroscope vibrates in the opposite direction to the vibrating rod on 
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which it is fixed. [5]. Likewise, the effect of biharmonic excitation on the dynamics and coexistence of 
gyroscope attractors, whose behavior is governed by a system of three differential equations, was studied [34]. 
The authors concluded that the dynamics of the gyroscope is strongly influenced by the frequencies of the 
biharmonic force, thus confirming the impact of its vibrational environment on its behavior, as previously 
demonstrated [5] . 
 In nature, systems that escape the influence of at least one damping force are rare. Extensive research 
has been conducted on the impact of damping forces, demonstrating that these dissipative forces play a 
significant role in chaotic dynamics and the coexistence of attractions. These dissipative forces were taken into 
account as a polynomial function. It is therefore obvious that gyroscopes are not spared by the action of a 
dissipative force, as certain authors have shown in their previous work [2-4, 14, 15, 26-33]. Recently, 
Kpomahou and his collaborators also demonstrated that parametric dissipative forces can influence the 
dynamics of complex systems [34-36].  
 Their conclusion shows that increasing the amplitude of the parametric damping force favors the 
regular behavior of the system. To date, there are no studies in the literature concerning the impact of a 
nonparametric damping force on the complex gyroscope vibrations. We therefore, based on this motivation, 
researched the influence of a parametric linear damping force on the complete phenomena of the gyroscope 
[37]. In light of the significant results we have obtained, we have recognized the necessity and importance of 
exploring the complex gyroscopes vibrations and controlling them by considering nonlinear parametric 
damping. Consequently, our proposal in this study is to search the dynamics of gyroscope when subjected to 
a non-linear parametric damping force. The main objective is to examine the impact of this nonlinear 
parametric damping force on the complex phenomena that the gyroscope can undergo.  
 The rest of the work is presented as: In section 2 the complex oscillations of the gyroscope are modeled. 
Section 3 identifies the different possible resonances, determines the harmonic solution and controls them. It 
also studies the impact of each system parameter, evaluated numerically. In section 4, chaos, coexistence of 
attractors are sought and controlled by the proposed damping force. Finally, the work ends with a conclusion. 
 
2. Mathematic model of gyroscope dynamics 
 
 The system to be considered is a single-frequency-driven gyroscope model mounted on a vibrating 
base, as illustrated schematically in Fig.1. The motion of a symmetrical gyroscope mounted on a vibrating base 
can be described by Euler angles ,   and θ φ ψ . 

 
 

Fig.1. Schematic diagram of the single-frequency-driven gyroscope. 



114  Complex dynamics of a heavy symmetrical gyroscope… 

l - the distance between the center of gravity and O; l  - the magnitude of the external excitation disturbance; 
Mg - the force of gravity; ω - the frequency of the external excitation disturbance; θ - nutation angle; ϕ - 
precession angle; ψ - rotation angle around the gyroscope's symmetry axis.  
The Lagrangian of the system is written as follows [28]:  
 

  ( ) ( ) ( )   sin  cos      sin cos
22 2 2

1 3
1 1L I I Mg l l t
2 2

= θ + φ θ + φ θ+ ψ − + ω θ    (2.1) 

 
with 1I  and 3I  - are the polar and the equatorial moments of inertia of the gyroscope, respectively. 
From the analysis of Eq.(2.1), it is observed that ϕ and ψ represent cyclic coordinates. Thus, the first integrals are:  
 

  ( )    sin   cos   cos   ,2
1 3

LP I Iφ ψ
∂= = θ+ φ θ+ψ θ=β
∂φ

    (2.2) 

 

  ( )        3 z
LP cos Iψ φ

∂= = φ θ+ψ =β = ω
∂ψ

  . (2.3) 

 
We utilize to simplify the Routhian formulation: 
 
  R L P P= − φφ − ψψ  . (2.4) 
 
Depending on the nature of the medium with which the gyroscope interacts, the dynamics of the gyroscope can 
be influenced by damping forces [1-5]. Here, we consider the following parametric damping force [34, 35]: 
 
  ( )( )( )  , 3

dF 1 hcos t= + ω λθ + γθ   (2.5) 

 
h is parametric damping amplitude λ  and γ  - coefficients describing respectively the linear and nonlinear 

damping of the system. The cubic nonlinear term 3γθ is added to capture the high-amplitude nonlinear effects 
commonly observed in mechanical systems where nonlinear deformations or behaviors occur at high 
amplitudes. A quadratic term was not considered as it does not adequately reflect the dynamics observed in 
this type of system, as discussed in the works of [36, 37]. 
The dynamic equation of the gyroscope is therefore: 
 

  .d
d R R F
dt

∂ ∂− =
∂θ ∂θ

 (2.6) 

 
Inserting Eq.(2.4) and Eq.(2.5) in Eq.(2.6), we obtain after some mathematical transformations: 
 

  ( ) ( )cos
 cos )( sin sin sin .

sin

22
3

2 3
1 11

1 Mgl Mg1 h t l t
I II

φβ − θ
θ+ + + ω λθ + γθ − θ = ω θ

θ
   (2.5) 

 
Thus, we have  
 

  
( )( )
( ) ( )( )( ) ( ) ( ) ( )

 cos
  cos    sin  sin sin

sin ³

2
2 31 x

x 1 h t x x x f t x
x

−
+ α + + ω λ + γ − β = ω   (2.6) 
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with      ,   ,    ,    .3 z

1 1 1 1

I Mgl Mgx f l
I I I I

ϕβ ω
=θ α = = β= =   (2.7) 

 
3. Gyroscope resonant states and harmonics oscillations 
 
 To understand the overall behavior of a nonlinear dynamic system, it is important to determine its 
resonance states. Thus, the resonance amplitudes are determined and consequently the mechanical energy of 
the system could be controlled because it is proportional to the square of the amplitude of the vibrations [8-
14]. Indeed, an exaggerated increase in energy at resonance in mechanical systems can cause excessive 
vibration, fatigue of materials, breakage, etc. of the system. To know the vibration amplitude ranges and avoid 
this damage to gyroscopic systems, this section detects the resonance states of the gyroscope and analyzes the 
influences on these resonances. 
 In order to be able to analytically determine the possible resonance states of the gyroscopes and taking 
into account the strong nonlinearity of the dynamic equation, we take the limited expansion of sin x  and 

( )( )
( )

  cos ²
sin ³

1 x
x

−
 at order 3 gives sin   ³1x x x

6
= −  and

( )( )
( )

  cos ²
 .

sin ³
31 x 1 1x x

x 4 12
−

= +   

 Using these limited expansions, Eq.(2.8) becomes: 
 

  ( )( )     cos   sin   ,2 3 3 3
0

1x x x 1 h t x x f t x x
6

 + ω = −μ + + ω λ + γ + ω − 
 

    (3.1) 

 

with   ²   ,      .
2

2
0 4 12 6

α α βω = −β μ= +  

 
In the following, we take  2

0 1ω = .  
To identify subharmonic resonances, we employ the multiple-scale method. 
Generally, the solutions are: 
 
  ( ) ( ) ( ),   ,  , ...   ,  ,  ...0 0 1 1 0 1x t x t t x t tε = +ε    (3.2) 
 
and the derivative operators can now be expressed as follows: 
 

  ,
n

m m
n n m

tm m
n

d d
dt dt

= = ∂   (3.3) 

 
        ... ,

0 1t tt∂ =∂ + ε∂ +   (3.4) 
 
        ..., 

0 1
2 2
t t0 t t2∂ =∂ + ε∂ ∂ +  (3.5) 

 
with   n

nt t=ε  and 0 1≤ ε ≤  

By replacing Eqs (3.3), (3.4) and (3.5) in Eq.(3.1), we obtain: For 0ε  we have: 
 
   2

0 0 0D x x 0+ =   (3.6) 
 
and for 1ε , we have:  
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( )( ) ( )( )

( )

    cos  

sin  .

32 3
1 1 1 0 1 1 0 0 0 0 0 0

3
0 0 0

D x x 2D D x x 1 h T D x D x

1f T x x
6

+ = − −μ − + ω λ + γ +

 + ω − 
 

 (3.7) 

 
The solutions of Eq.(3.6) are:  
 
  ( )     0iT

0 1x A T e cc= + ,  (3.8) 
 
where cc denotes the complex conjugate terms. 
Upon inserting 0x  into Eq.(3.7), we obtain: 
 

  
( ) ( )  

 

.

0

0 0

2
iT2 2 2

0 1 1

2 3 3
i 1 T i 3 T

h A i3h AAD x x 2iA 3A A i A 3 A A e
2 2

ifA ifAA ifA i3h AAe e NST cc
2 4 12 2

Ω− Ω−

 λ γ + = − − − λ − γ − + +  
 γ+ + + + + 


′


+

 

 (3.9) 

 
NST and cc denote no secular and complex conjugate terms respectively. According to the analysis of Eq.(3.9), 
we see that, the nonlinear gyroscopes can only undergo subharmonic resonances such as    2Ω = + σ  and
     4Ω= + σ , where σ is detuning parameter. The 2nd order subharmonic resonance ( )   2Ω = + σ  is treated in 
subsection 3.1 while the 4th order subharmonic resonance ( )    4Ω= + σ  is studied in subsection 3.2. Subsection 
3.3 is dedicated to the harmonic vibrations of the gyroscope. 
 
3.1. Subharmonic resonance order 2 
 
 This part determines the amplitude and frequency of the order 2 subharmonic resonance. For that, we 
insert    2Ω = + σ  into Eq.(3.9), when the secular terms equal to 0 and we use:  
 
  ( )  .1T

1A T e= α  (3.10) 
 
Then, we obtained: 
 

  cos ,
3 3 33 h h 3h f f

2 8 2 8 2 4
 λα γ′ α λα γα α αα = − − − + + + ν  
 

  (3.11) 

 

  sin ,
3 3 33 h 3h f f

8 2 8 2 4
 μα λα γα α αφ α = − − + +′ + ν  
 

 (3.12) 

 
where    1T 2κ=σ − φ . Considering  '   '  ,a 0= κ =  the second-order subharmonic resonance is: 
 

  .
2 2 22 2 2 23 h 3 h 3h f f

2 8 2 8 2 8 2 4
     λ γ α σ μα λ γα α+ + − = + + +          
     

 (3.13) 
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The vibration amplitudes for the second order subharmonic resonance are completely determined by Eq.(3.13). 
Indeed, using the dichotomy method, we numerically determine the different amplitudes A of vibrations. Thus, 
Figures 2a, b, c obtained, show the impact of  f, µ and λ respectively on this resonance. As for Figs 3a, b they 
show the effects of γ and h on the resonance. We see that the amplitude and σ increase when  f, µ and λ increase 
while the amplitude and σ decrease with γ and h. It follows that the amplitude and the resonance frequency 
increase with the amplitude f of the excitation force, the coefficient µ of the nonlinear term of order 3, of the 
linear parametric dissipation but decrease when the nonlinear dissipation increases. 

 

 

 
 

Fig.2. (a) Influence of parametric amplitude f, (b) Impact of parametric amplitude λ and (c) impact of parametric 
 amplitude µ on order 2 subharmonic resonance curve when   , . , , . ,  .5 h 0 2 2 µ 0 1 f 2γ = = − λ = = =  

 

 
Fig.3. (a) Impact of γ and (b) impact of h on subharmonic resonance state in order 2 curve with 

  ,   . ,   , µ . ,   2 h 0 2 f 2 0 1 5λ = = − = = γ = . 
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3.2. Subharmonic resonance order 4  
 
 In this part, we studied the order 4 subharmonic resonance state. For this subharmonic state, 
     .4Ω= + σ  Equating resonance terms at 0 from Eq.(3.9), we obtained after some algebraic manipulations: 
 

  cos ,        sin
3 3 3 33 h h f 3 h f

2 8 2 12 8 2 12
   λα γ α γα α μα γα αα = − − − + ν φ α = − − + ν      
   

′ ′ , (3.14) 

 

(a) 

 
 
 
 
 
 
 
 
 
(b)

 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 
Fig.4. (a) Impact of parametric amplitude f, (b) Impact of λ and (c) Impact of µ on subharmonic resonance 

state in order 4 curve with γ ,   . ,  λ  ,  µ  . ,     .5 h 0 2 2 0 1 f 2= = − = = =  
 

 
Fig.5. (a): Impact of γ and (b): Impact of h on subharmonic resonance order 4 with , . ,  µ ,5 f 0 2 0γ = = =  

  . ,   h 0 1 2= λ = . 
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where    1T 2η=σ − φ . For  '  ' ,a 0= η =  the subharmonic resonance equation is: 
 

  .
2 2 22 2 23 h 3 h f

2 8 2 8 2 12
     λ γ α σ μα γ α− + − = +          
     

 (3.15) 

 
In the same way for the subharmonic resonance of order 4, Eq.(3.15) is solved by the dichotomy method. 
Figures 4a, b, c show us the impact of f, µ and λ respectively while for Figs 5a, b present the effects of γ and h. 
We see that the amplitude and σ increase when f, λ, µ, γ and h. It follows that the amplitude and the resonance 
frequency increase with the all system parameters. 
 
3.3. Harmonic oscillations 
 
 To derive the amplitudes of harmonic vibrations of the gyroscope, we apply the harmonic balance 
method. Indeed, harmonic vibrations are determined by considering: 
 
  ( )  x t Acos= θ , (3.16) 
 
where     tθ=ω +φ . Let’s substitute the harmonic solution into 
 

  ( )( )cos sin3 3 31x x x 1 h t x x f x x t
6

 + + μ − − ω λ + γ = − ω 
 

  . (3.17) 

 
After some algebraic manipulations, we obtain: 
 

   .                
2 2 22 3 2 3 2 2 3

2 23A 3A h h 3 A 3hA 11 f A
4 8 2 4 4 8

   ω γ ω γ ωλ μ ω γ  + ωλ + + + ω + + − = −             
 (3.18) 

 
By solving this equation by the dichotomy method, we obtain the amplitudes of the harmonic vibrations and the 
results are represented by Figs 6 and 7. From these figures, we see that the amplitude and resonant frequency 
increase when λ , µ and h increase while the amplitude and resonant frequency decrease with γ  and f.  
 

 
Fig.6. (a) Effect of  λ, (b) effect of γ on the amplitude-frequency curve of the parameter when   , µ . ,   . , 1 0 0 f 0 2γ = = =

  . ,   .h 0 1 2= λ =  
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Fig.7. (a) Impact of µ, (b) effect of h, (c) Impact of f on the amplitude-frequency curve of the parameter with µ: 

  ,   ,    . ,    .  , µ . .1 2 f 0 2 h 0 1 0 0γ = λ = = = =  
 
For Fig.7a, as µ increases (from 0 to 0.05 and then 0.5) we observe that the peak decreases in amplitude and the 
curve tends to flatten.  
 
4. Effect of a parametric nonlinear damping on chaotic dynamic and coexistence of attractors 
 
 Chaotic dynamics and the coexistence of attractors are very complex phenomena that can negatively 
affect the performance of the gyroscope because they do not guarantee stability in the movement of the 
gyroscope [5, 14, 15, 25 ]. This is the reason why Hounnan et al. [5] used passive control to eliminate both 
phenomena. Likewise Aguessivognon et al. [25] showed that when the gyroscope is under the influence of a 
biharmonic force, the chaotic dynamics and the coexistence of attractors can be accentuated or reduced 
depending on the appropriate values of the amplitude and frequency of the force biharmonic. Here we want to 
control the complex phenomena of the system using the nonlinear parametric dissipation force. To do this, we 
solve equation (2.8) numerically using the Runge-Kutta algorithm of order 4. For this, Eq.(2.8) is rewritten in 
the following form: 
 

  
( )( )
( ) ( )( )( ) ( ) ( ) ( )

 cos
 ,   cos   sin  sin sin .

sin ³

2
2 31 x

x y y 1 h t y y x f t x
x

−
= = −α − + ω λ + γ + β + ω   (4.1) 
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For the simulations, the step for the bifurcation parameter is .hf 0 001= ; the step for time is .dt 0 01= ; the 
number of iterations is 1000000; the initial conditions are: for the red curve ( ). , .  0 0x 0 5 y 0 2= = and for blue 
curve ( ). , .0 0x 0 5 y 0 2= = − . Thus, taking h as a control parameter, the bifurcation diagram, the Lyapunov 
exponent as well as the phase space are represented. Figure 8 represents the bifurcation diagram and Lyapunov 
exponent obtained for h ranging from 9 to 14. From this figure, we see that the route to gyroscope chaos when 
the parametric damping varies is period-doubling. Figure 9, obtained for various values of h, shows phase 
portraits and confirms the bifurcation diagram prediction. Figures 10, 11, 12, 13 represent the bifurcation 
diagram for 9 h 14≤ ≤  and show the impact of ,  ,   and f α β λ  respectively on the coexistence of the attractors 
of the gyroscope complex vibrations. Figure 14 represents the phase portraits and confirmed the various 
attractors coexisting obtained at Fig.10. After all these analyses, we notice that the chaos and the coexisting 
attractors are strongly influenced by the control force and the parameters of the gyroscope. 
 

 
Fig.8. Bifurcation diagram and its corresponding Lyapunov exponent showing the route to chaos for the  

gyroscope when  ,   ,    ,    and    1 f 40 2 1 1β = = ω= γ = λ = . 
 

 
 
Fig.9. Phase portraits corresponding to (a) h 10= ; (b) .h 11 5= ; (c) h 11= ; h 12=  and (d) h 13=  using the  

parameters from Fig.8. 
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(a) 

 
 
 
 
 
 
 
 
 
(b)

 
 
 
 
 
 
 
 
 
 

 
(c) 

 
Fig.10. Dynamics and coexistence of the gyroscope for   ,    ,  and     .1 1 2 1γ = λ = ω= β=  Effect of  f  with ,f 40=  

.f 33 4=  and f 33=  respectively for (a), (b) and (c). The red and blue curves are obtained for an 
increasing h (ranging from 9 to 14) and decreasing h (ranging from 14 to 9). 

 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 
 

Fig.11. Effect of α on dynamics for   ,  ,  and    1 h 0 2 1γ = = ω= β= : (a) 10α = ; (b) 15α = ; (c) 17α = . The red and 
blue curves are obtained for an increasing h (ranging from 9 to 14) and decreasing h (ranging from 14 to 9). 
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(a) 

 
 
 
 
 
 
 
 
 
(b)

 
 
 
 
 
 
 
 
 
 

(c) 
 
Fig.12. Impact of β  on dynamics for   ,    ,  and   , 1 1 2 1 f 40γ= λ= ω= β= = : (a) .0 5β = ; (b) 1β = ; (c) .3 5β = . The 

red and blue curves are obtained for an increasing h (ranging from 9 to 14) and decreasing h (ranging 
from 14 to 9). 

 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
(b)

 
 
 
 
 
 
 
 
 
 

(c) 
 
Fig.13. Effect of the parameter λ on dynamics for , ,   = ,  1 2 f 35 h 0γ = ω = = : (a) 0λ = ; (b) 1λ = ; (c) . .3 5λ =  

The red and blue curves are obtained for an increasing h (ranging from 9 to 14) and decreasing h (ranging 
from 14 to 9). 
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Fig.14. Phase portraits for (a) h 10= ; (b) .h 11 5= ; (c) h 13=  and (d) .h 13 5=  with the parameters of Fig.10. 

The red and blue curves are obtained for an increasing h (ranging from 9 to 14) and decreasing h (ranging 
from 14 to 9).  

 
5. Conclusions 
 
 The impact of the non-linear damping force on the complex phenomena, secondary resonance, chaos 
and coexistence of attractors of a rotating gyroscope is studied in this work. From the Lagrangian of the system, 
the modeling of the non-linear dynamics is done. The multiple time scale technique is used to determine 
subharmonic resonances. We also used the harmonic balance method to determine the harmonic solution of 
the oscillator equation. The study of the impact of the parameters ,  , , , fα β γ λ and h on the resonances obtained. 
Subharmonic resonances exploit Eq.(3.9) while harmonic oscillations are obtained from Eqs (3.17) and the 
harmonic balance method. Equations (3.9) and (3.17) are derived from the limited development of Eq.(2.8) 
which is the basic equation solved numerically to investigate the dynamics and coexistence of the gyroscope 
attractors. We carried out numerical analyzes of the effects of these parameters on the complex dynamics of 
the system. As a result, the choice of the values of the system parameters impacts the chaotic dynamics and 
the coexistence of the system's attractors. Thus, we note that the chaotic dynamics and the coexistence of 
attractors can be eliminated for precise values of ,  , , , fα β γ λ , h The growing advancement of rotating 
machinery technology widely used across various industrial sectors today necessitates an enhancement in both 
performance and efficiency of these machines based on their defining parameters. 
 
Acknowledgments 
 
 The authors would like to thank very much the anonymous referees whose useful criticisms, comments 
and suggestions would helped strengthen the content and the quality of the paper. 



G.F. Pomalegni et al.  125 

Nomenclature  
 
  ,1 3I I  – the polar and the equatorial moments of inertia of the gyroscope, respectively  

 l  – the distance between the center of gravity and O 

 l  – the magnitude of the external excitation disturbance 
 Mg – the force of gravity 
 ω – the frequency of the external excitation disturbance 
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