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This study employs finite element analysis (FEA) and response surface methodology (RSM) to analyze the 
stress concentration factor (SCF) in a biaxially loaded isotropic plate with a central countersunk hole. A finite 
element model is built using ANSY and employed to generate stress concentration factor values. The finite element 
model was optimized in terms of mesh density and properties based on data from past literature. Five dimensionless 
parameters are studied: radius to width ratio, thickness to radius ratio, countersink to thickness ratio, σy to σx ratio 
and countersink angle. The effect of the different configurations was studied using RSM. Finally, a precise second 
order equation was produced to estimate the value of SCF with dimensionless parameters.  
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1. Introduction 

 
 Countersunk holes are commonly used in industrial and engineering joints such as riveting to join two 
thin plates and maintain a flush aerodynamic surface. The presence of such irregularities i.e. countersunk holes 
leads to stress concentrating on the thickness of the joined structures. This phenomenon is often described 
using stress concentration factor (SCF), which is mathematically defined as the ratio between the maximum 
stress value maxσ  and nominal stress value nominalσ . 
 

  
 

max
t

nominal
K σ

=
σ

. (1.1) 

 
 Several studies have been conducted to investigate the phenomenon of stress concentration around the 
holes. Pilkey and Pilkey [1] summarized existing literature on the subject, specifically on stress concentration 
in circular holes in thin plates under various loading conditions. Shivakumar and Newman [2] conducted a 
three-dimensional finite element analysis of the stress concentration factor in thin and thick plates with circular 
holes, considering diverse loading scenarios. Similarly, Wu and Mu [3] numerically examined SCF in isotropic 
and orthotropic plates having central circular holes subjected to uniaxial and biaxial loading. Kostouv et al. 
[4] examined the effects of plate thickness and Poisson's ratio on the in-plane stress concentration factor and 
the out-of-plane stress constraint factor. In contrast, Li et al. [5] explored how different notch configurations 
influence these stress concentration factors. Additionally, She et al. [6] used finite element methods to analyze 
how the thickness-to-root radius ratio and aspect ratio of elliptical holes affect stress concentration factors. 
Enab [7] explored SCF in elliptical holes, while Kumar et al. [8], Jadvani et al. [9], and Zhou and Fei [10] 
investigated various types of cutouts. Kumar et al. presented a literature review on stress concentration in 
composite panels with holes and cutouts [11]. 
 Some papers were published discussing the SCF in plates with countersunk holes. Wharely [12] 
conducted experimental studies to assess the localized stresses in Aluminum plates. Cheng [13] utilized the stress 
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freezing technique to find stress within the thickness of plates with countersunk holes. Cheng explored thirteen 
configurations with varying depths and countersink angles, conducting seven tests for specimens in tension 
loading and six for bending. His research indicated that the stress concentration is located at the edge of the 
countersink. Shivakumar et al. [14] and Bhargava and Shivakumar [15, 16] conducted extensive finite element 
analysis on isotropic and orthotropic plates with countersunk holes. Intricate empirical equations based on FEA 
data to calculate the SCF for plates with countersunk holes in a uniaxial loading scenario were presented by 
Darwish et al. [17, 18]. Gharaibeh [19] presented a study on the stress concentration factor in plates with double 
countersunk holes due to uniaxial tension. Gharaibeh et al. [20] presented another paper that provided a more 
straightforward formula for SCF calculation and optimum hole geometries that minimize the SCF value.  
 Several studies [21-25] investigated the issue of strain concentration in countersunk holes in axial and 
biaxial loading scenarios, providing valuable equations and precise models.  
 Alshyyab and Darwish [26] presented a paper using FEA to find the effect of the biaxial stress ratio 
and the hole configuration and loading ratio on SCF. They found that the maximum SCF is located at the 
straight shank part of the hole. 
 Much research has been conducted on stress concentration in plates with various configurations; 
however, there is a notable gap in studies that explore the effects of different loading conditions, particularly 
in scenarios involving biaxial loading. This paper specifically addresses this gap by investigating the stress 
concentration factor (SCF) in plates featuring a single countersunk hole under biaxial loading conditions, a 
combination that has not been extensively studied.  
 This paper intends to employ the finite element method (FEM) and response surface method (RSM) to 
investigate the stress concentration factor (SCF) in biaxially loaded plates featuring a single countersunk hole. 
Moreover, it aims to develop a simple equation based on dimensionless variables for determining the SCF. 
 
2. Geometry and load description 
 
 The system studied is an elastic plate with a countersunk hole placed centrally. The plate is subjected 
to biaxial loading, as illustrated in Fig.1. The geometric parameters shown include the plate length ( )l , width 

( )w , and thickness ( )t , which can be split into two parts: the countersink depth ( )sC  and the straight shank 
depth ( )b  (hence, st C b= + ). Additionally, the shank radius ( )r  and countersink angle ( )cθ , which is usually 

between 80° and 120°, were specified. Also loading in the x and the y directions are shown ( ),x yσ σ . 
 

 
 

Fig.1. Plate configuration (a) X-Y plane, (b) X-Z plane, (c) Y-Z plane. 
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 For the purpose of this study, we examined the effect of the following five nondimensional parameters: 
countersink angle ( )cθ , thickness to radius ratio ( )/t r , countersink depth to plate thickness ratio ( )/sC t , 

radius to width ratio ( )/r w  and the ratio between ( )yσ  and ( )xσ  ( )/r y xσ = σ σ . For all cases the length to 
radius ratio was kept constant ( /l r 15= ) which is done to eliminate the effect of plane length on SCF value. 
 
a) b)

 

 
Fig.2. (a) Boundary conditions and loads applied on a quarter model, (b) finite element mesh. 

 
3. Finite element modelling 
 
 As depicted in Fig.2. only a quarter of the whole plate was modeled because the geometry of the plate, 
loading and boundary conditions are symmetric. Hexahedron elements (SOLID 185) were employed to create 
the FE mesh. The origin is located the center of the hole and at ( ) ,  , X 0 Y 0 Z 0= = = , on the planes 

( ) ,X 0 Y 0= =  displacement is constrained to zero and displacement on the Z direction is also constrained to 
zero, biaxial load ( ) and  X Y X r1σ = σ = σ × σ  is applied on the two planes ( ) , X l Y w= = . The plate is 
homogeneous and isotropic, with an elastic modulus ( ) E 200 GPa=  and Poisson’s ratio ( ).0 33ν = . 
 As shown in Fig.2b, the FE mesh is designed to have a higher density near the hole edges and gets 
lower everywhere else. This ensures high accuracy at the areas of interest while decreasing the time required 
to solve each iteration this was implemented from a previous study done by Gharaibeh et al. [20]. 
 
4. SCF analysis using RSM 
 
 Response surface method is a statistical and mathematical technique used to analyze the relationship 
between a set of independent variables and the response variable (SCF in this case). RSM is especially valuable 
when the relationships between the independent variables are complex and cannot be easily described by simple 
linear equations. RSM is usually used to fit a second order response surface. Also, RSM describes the main effects 
and interactions of the independent variables on the response variable while using the minimum number of runs. 
  For the purposes of this analysis MINITAB version 21.4.1 was used to design the response surface. 
Table 1 shows the five dimensionless variables countersink angle ( )cθ , thickness to radius ratio ( )/t r , 

countersink depth to plate thickness ratio ( )/sC t , radius to width ratio ( )/r w  and the ratio between ( )yσ  

and ( )xσ  ( )/r y xσ = σ σ  each of the variables is split into three levels: low ( )1− , middle ( )0  and high ( ).1+  

A blocked full factorial ( )k2  central composite design (CCD) with central and axial points ( )2k  where k is 

the number of independent dimensionless variables ( ) for this studyk 5= . In this design, 54 FE 

 kCCD 2 2k 12= + +  the model was improved by adding 12 replicate runs at the central point to ensure the 
stability of the model as suggested by MINITAB (four runs of which were eliminated because of invalid 
geometry). To construct a second-order response surface, the following formula was taken into consideration: 
 

  
k k

2
t o i i ij i j ii ii

i 1 i j i 1
K c c Z c Z Z c Z e

= ≤ =
= + +  + +   . (4.1) 
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iZ  and jZ  represent the independent variables, oc  denote the constant coefficient, and  ,  , and i ii ijc c c  
represent the coefficients for linear and second-order terms respectively. Additionally, e  represents the 
random relative error. 
 
Table 1. The CCD for the five independent variables. 
 

 
5. Results and discussion 
 
5.1. Central composite design results 
 
 After completing the fifty experimental runs the SCF outcomes were recorded as shown in Appendix 
1, the highest SCF value was ( ).tK 19 762=  the values for the independent variables are ( )/ .  r w 0 10= , 

( )/ .t r 4 5= , ( ) ( )/ .  ,  s cC t 0 5 120= θ = and ( ) .r 4 5σ = . In all engineering applications we aim to reduce the 
SCF thus this configuration is not advisable. 
 
5.2. Regression, analysis of variance and residual analysis 
 
 For the work presented in this paper the most accurate regression model for tK  is quadratic and 
includes all the independent variables as shown in the equation below: 
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  (5.1) 

 
 After analyzing the data in Table 2, seven terms were removed from the equation to reduce complexity 
without affecting the accuracy of the model. This is because the contribution of the removed terms to the final 
result is insignificant. Therefore, the simplest yet accurate equation describing tK  is as presented below: 
 

 
Independent variables 

RSM levels 

low ( )1−  middle ( )0  high ( )1+  
radius to width ratio ( )/r w  0.1 0.25 0.4 
thickness to radius ratio ( )/t r  0.5 2.5 4.5 
countersink depth to plate thickness ratio ( )/sC t  0.1 0.3 0.5 
countersink angle ( )cθ  80 100 120 

ratio between ( )yσ  and ( )xσ  ( )/r y xσ = σ σ  0.5 2.5 4.5 
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( ) ( )

( ) ( ) ( )

. . . . . .

. . . .

s
t c r

s
r c r

Cr tK 4 021 0 983 0 576 7 85 0 02296 0 616
w r t

Cr t t t2 498 1 021 0 00399 0 0886
w r t r r

    = + − − − θ + σ +          
        + σ + + θ + σ +                

 
 (5.2)

 

  ( ) ( ) ( )( ). . .s s
c r c r

C C0 0662 1 617 0 00544
t t

   + θ + σ + θ σ   
   

 ( ). 2
r0 1693+ σ . 

 
The 2R  value for the equation comprising 14 terms is 99.64, signifying a high level of accuracy for the model. 
 The residuals (the error between the model and the FEA results) of the proposed model were checked. 
A valid RSM model demands that these residuals exhibit specific characteristics, including symmetry, absence 
of correlation, adherence to normal distribution, and constant variance. 
 Shown in Fig.3. are the residuals plots for the response variable K, revealing that the residuals conform 
to normal distribution (as evident in the normal probability plot), lack skewness (as demonstrated by the 
histogram), display no correlation among themselves (as seen in the residuals vs. order plot), and maintain 
constant variance (as indicated in the residuals vs. fits plot). Indicating that the ordinary least squares method 
that was used to produce the equation above assumptions are fully satisfied. 
 

  

 
Fig.3. Residual tables for RSM. 
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5.3. Main effects of the geometric parameters 
 

Fig.4. shows the effect that each of the parameters studied  , ,  , , s
c r

Cr t
w r t

 θ σ 
 

 on the value of tK . The figure 

shows that tK  correlates linearly (nearly linear in the case of rσ ) and positively with each of the studied 

parameters being influenced the most by the value of y
r

x

σ 
σ = σ 

 and cθ  having the least effect. 

In summary, the results and data from the Response Surface Methodology (RSM) in this study reliably and 
accurately predict the stress concentration factor in an isotropic rectangular plate subjected to biaxial loading 
and featuring a single countersunk rivet hole.  
 

 
 

Fig.4. Main effects plot. 
 
6. Conclusion 
 
 This paper intensively studied the SCF in biaxially loaded isotropic rectangular plates with a centrally 
placed countersunk hole using finite element and response surface methods. Past papers finding were leveraged 
to create a more refined model. The influence of five dimensionless geometric and loading parameters 

 , ,  , , s
c r

Cr t
w r t

 θ σ 
 

 on the stress concentration factor tK  was comprehensively analyzed. A highly effective 

and accurate second-order equation was reached by using response surface and ordinary least squares methods 
and was validated with data from finite element analysis. Based on the data presented in this study, we suggest 
that for any application with similar loading and geometric properties, the ratio between the two loading 
directions should be as small as possible. Additionally, using smaller radii is recommended for a lower stress 
concentration factor. 
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 sC  – countersink depth 
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 sC
t

 – countersink to thickness ratio 

 E – modulus of elasticity  
 FE – finite element 
 FEA – finite element analysis 
 tK  – stress concentration factor 

 l  – plate length  

 R
w

 – radius to width ratio 

 2R  – coefficient of determination 

 RSM – response surface method 
 r  – hole radius 
 SCF – stress concentration factor 
 t  – plate thickness  
 w  – plate width  

 cθ  – countersink angle  

 ν – Poisson’s ratio 
 xσ  – loading in x direction 

 yσ  – loading in y direction 

 
Appendix 
 
Table 2. Analysis of variance. 
 

Source DF Adj SS Adj MS F-Value P-Value 
Model 15 1327.97 88.53 622.08 0.000 
Blocks 2 0.31 0.15 1.07 0.354 
Linear 5 1287.30 257.46 1809.08 0.000 
r/w 1 30.93 30.93 217.35 0.000 
t/r 1 12.92 12.92 90.81 0.000 
Cs/t 1 30.34 30.34 213.17 0.000 
thetac 1 4.80 4.80 33.74 0.000 
Sigma2/Sigma1 1 1229.91 1229.91 8642.11 0.000 
Square 1 3.55 3.55 24.94 0.000 
Sigma2/Sigma1*Sigma2/Sigma1 1 3.55 3.55 24.94 0.000 
2-WayInteraction 7 29.11 4.16 29.22 0.000 
r/w*Sigma2/Sigma1 1 14.42 14.42 101.35 0.000 
t/r*Cs/t 1 4.07 4.07 28.59 0.000 
t/r*thetac 1 0.68 0.68 4.77 0.036 
t/r*Sigma2/Sigma1 1 3.23 3.23 22.68 0.000 
Cs/t*thetac 1 1.87 1.87 13.17 0.001 
Cs/t*Sigma2/Sigma1 1 10.75 10.75 75.51 0.000 
thetac*Sigma2/Sigma1 1 1.30 1.30 9.16 0.005 
Error 34 4.84 0.14   
Lack-of-Fit 25 4.84 0.19 * * 
PureError 9 0.00 0.00   
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Table 3. FEA, RSM, errordata. 
 

Run 
order 

r
w  t

r  sC
t  cθ  rσ  tK  

from ansys 
 tK  

from equations 
 

Error% 
1 0.4 0.5 0.5 120 0.5 3.525 3.515 0.271 
2 0.1 0.5 0.1 120 0.5 2.555 2.281 10.743 
3 0.1 4.5 0.5 120 0.5 3.981 4.676 -17.469 
4 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
5 0.4 4.5 0.1 120 0.5 3.297 3.147 4.557 
6 0.4 0.5 0.5 80 4.5 17.806 17.920 -0.639 
7 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
8 0.1 0.5 0.1 80 4.5 12.770 12.160 4.776 
9 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 

11 0.1 4.5 0.1 80 0.5 2.640 2.304 12.733 
12 0.4 0.5 0.1 120 4.5 16.120 16.232 -0.699 
13 0.4 0.5 0.1 80 0.5 2.917 3.415 -17.080 
14 0.1 0.5 0.5 80 0.5 2.735 2.252 17.678 
15 0.4 4.5 0.1 80 4.5 16.668 16.803 -0.807 
16 0.1 0.5 0.5 120 4.5 15.104 15.717 -4.060 
17 0.1 4.5 0.5 80 4.5 16.616 16.862 -1.480 
18 0.1 4.5 0.1 120 4.5 13.738 14.179 -3.214 
19 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
21 0.4 2.5 0.3 100 2.5 10.585 10.295 2.734 
22 0.25 2.5 0.3 120 2.5 9.333 9.620 -3.079 
23 0.25 4.5 0.3 100 2.5 9.771 9.912 -1.447 
24 0.25 0.5 0.3 100 2.5 7.774 8.509 -9.459 
25 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
26 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
27 0.25 2.5 0.3 80 2.5 8.378 8.801 -5.049 
28 0.25 2.5 0.5 100 2.5 10.297 10.284 0.127 
29 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
30 0.25 2.5 0.3 100 4.5 16.962 16.563 2.351 
31 0.1 2.5 0.3 100 2.5 7.901 8.127 -2.855 
32 0.25 2.5 0.1 100 2.5 7.473 8.138 -8.893 
33 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
34 0.25 2.5 0.3 100 0.5 3.257 3.213 1.368 
36 0.4 0.5 0.1 120 0.5 2.958 2.950 0.253 
38 0.1 0.5 0.1 80 0.5 2.524 2.746 -8.793 
39 0.4 0.5 0.1 80 4.5 15.947 15.827 0.753 
40 0.1 0.5 0.5 80 4.5 13.973 14.253 -2.002 
41 0.1 0.5 0.5 120 0.5 2.944 2.846 3.323 
42 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
43 0.4 0.5 0.5 120 4.5 19.705 19.385 1.626 
44 0.1 4.5 0.5 120 4.5 19.762 18.965 4.031 
45 0.1 4.5 0.1 80 4.5 13.214 13.136 0.593 
46 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
47 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
48 0.1 4.5 0.5 80 0.5 3.293 3.444 -4.557 
49 0.1 4.5 0.1 120 0.5 2.770 2.477 10.577 
50 0.25 2.5 0.3 100 2.5 9.333 9.211 1.309 
51 0.1 0.5 0.1 120 4.5 12.903 12.565 2.623 
52 0.4 4.5 0.1 80 0.5 3.085 2.974 3.597 
53 0.4 4.5 0.1 120 4.5 17.666 17.847 -1.023 
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Table 4 cont. FEA, RSM, errordata. 
 

Run 
order 

r
w  t

r  sC
t  cθ  rσ  tK  

from ansys 
 tK  

from equations 
 

Error% 
54 0.4 0.5 0.5 80 0.5 3.213 2.921 9.091 
55 0.5 0.1 0.7 120 0.5 3.930 3.756 4.416 
56 0.05 6.5 0.3 60 3 9.216 9.241 -0.270 
57 0.1 1.5 0.6 160 10 54.879 48.426 11.757 
58 0.25 2 0.05 150 2 5.574 6.380 -14.458 
59 0.4 3 0.5 84 5 27.553 22.115 19.739 
60 0.06 6 0.3 104 3 10.498 10.843 -3.290 
61 0.3 3.225 0.1 121 4 13.566 14.176 -4.492 
62 0.2 4.5 0.6 111 6 34.827 28.151 19.170 
63 0.1 0.5 0.3 60 4 11.623 11.158 4.000 
64 0.25 1 0.1 125 1 2.251 3.804 -68.967 
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