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The purpose of this study is to investigate the effects of a time-varying electromagnetic field on the quasi-static 
thermoelastic behavior of a finitely conducting hollow circular cylinder. As a consequence of a time-varying 
electromagnetic field, conducting currents, also known as eddy currents, are induced inside the cylinder. We treat 
the Joule heat that the induced eddy currents generate due to resistive heating as a thermal loading of the cylinder. 
The cylinder thickness is considered negligible in comparison to the magnetic field's penetration depth, and the 
problem is considered one-dimensional. The convection-type boundary conditions are applied across the curved 
surface of the cylinder. The intensity of Joule heat in terms of current density and eddy current loss is obtained in 
quasi-static form using integral transform techniques, which include the finite Hankel transform, the Marchi 
Zgrablich transform, and the Laplace transform. The quasi-static solutions of thermal stresses, displacement, non-
dimensional temperature, eddy current loss, and magnetic field fluctuations are obtained in terms of electrical 
conductivity, magnetic permeability, frequency, and magnetic intensity of the electromagnetic field applied and are 
illustrated graphically using MATLAB software.  
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1. Introduction 
 

 Whenever the current passes through an electrical conductor, it produces thermal energy. This physical 
effect is known as joule heating. This thermal energy raises the conductive material's temperature. Joule heating 
is the transformation between electrical and thermal energy based on the principle of energy conservation. 
Around 1840, the famous amateur scientist James Prescott Joule was the first to observe and study the heating 
effect. He found that the recently invented electrical motor could be more useful than the steam engines in use at 
the process in terms of cost and efficiency. He found that the newly invented electric motors could be more 
advantageous in terms of cost and efficiency than the steam engines, which were used earlier in various processes. 
According to the law of conservation of energy, for an isolated system, the total energy is always conserved over 
time. To put it another way, we cannot create or destroy energy; instead, it continuously transforms into different 
forms. Therefore, “losses” is an incorrect or unsuitable word. Electrical devices and electromagnetic circuits 
permit the transfer of energy from one source to the other. But all this input energy is ultimately not used for its 
intended purpose. Some amount of energy is lost, mostly in the form of heat. 
 With the rapid advancement in the field of electromechanics, many devices, including magnetic circuits 
of electric motors, inductors, transformers, and generators that operate under the impact of changes in 
electromagnetic fields and get activated owing to these fluctuations, play key roles in modern technology. In 
recent years, significant attention has been observed in the field of so-called high-frequency heating, also known 
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as induction heating. It operates on the electromagnetic induction principle. During high-frequency heating, 
close-loop (eddy) currents are created inside the body. This is a type of contactless heating technique for 
conductive bodies. The electrical resistance of the body material produces a heating effect. Due to this heating 
effect, excess heat is generated that remains unused; we call this unused heat an eddy current loss. The elastic 
components and structures exposed to mechanical loads caused by a highly fluctuating magnetic field generate 
several forms of stress. In addition to mechanical stress, they also generate magnetic stress caused by the Lorentz 
force and thermal stress caused by induced eddy currents. Electromagnetic induction occurs when a magnetic 
field is applied to a conductor that is carrying an electric current, leading to the generation of eddy currents. Due 
to the wide range of applications of electromagnetic structures in the various diversified fields, the study of 
electromagnetic coupling's thermos-elastic phenomenon has a solid theoretical foundation in engineering [1-3]. 
 In the emerging topic of thermo-magneto-elasticity, we examine the stability, stiffness, and strength 
of various electromagnetic device components that operate under the combined influence of temperature, 
deformation, and electromagnetic fields. Thermo-elasticity is the examination of the relationship between 
temperature and elasticity, specifically focusing on the interaction between the temperature field and the elastic 
field. In contrast, magnetoelasticity studies electromagnetic forces and deformation. Heat conduction theory, 
electromagnetic theory, and classical elasticity theory are all included in thermo-magneto-elasticity. These 
theories are used to address the coupling issues between the thermal effect and the electromagnetic, 
temperature, and elastic fields of conductive materials placed in time-varying or steady magnetic fields. Wang 
[4] presented an effective method for the determination of the distribution of the dynamic thermoelastic stress 
in a hollow cylinder that is subjected to rapid arbitrary heating. Xing and Liu [5] used the difference method 
to study the quasi-static and dynamic responses of a rectangular plate in a magnetic field that varied in 
temperature. Using a variable separation method, Higuchi et al. [6-7] investigated the effect of changes in 
magnetic field and thermo-magneto-elastic stresses on a hollow cylindrical shell. The investigation of thermal 
stresses coming from eddy current loss and magnetic stresses arising from Lorentz force in a conducting half 
space created by an imposed rise through the tangential magnetic field along the boundary has been carried 
out by Moon and Chattopadhyay [8]. The aforementioned work has been expanded upon by Chian and Moon 
[9], who examined the stresses induced by a pulsed magnetic field at the cavity in a cylindrical conductor. 
Wauer [10] investigated the dynamic characteristics of a magneto-thermo-elastic plate layer subjected to a 
magnetic field comprising a sinusoidally fluctuating component parallel to the surfaces and a constant 
component. Pantelyat and Fe´liachi [11] examined the mechanical properties of metals in induction heating 
systems using the finite element approach. They calculated the thermo-elastic-plastic stresses induced by an 
alternating magnetic field using the material's temperature-dependent characteristics. A model was created by 
Sinha and Prabhu [12] to investigate the eddy current that is created in thin nonmagnetic plates when they are 
subjected to fluctuating magnetic fields over time. Xu and Cen [13] studied the dynamic reaction of a shallow 
conical shell's thermos-magneto-elastic behavior in a magnetic field that changes with time. Plotnikov [14] 
studied the problem of separation of the total losses in the electric steel of a magnetic circuit in terms of 
hysteresis loss and eddy current loss and discussed the frequency dependence of both losses in steel material. 
Ekergård and Leijon [15] investigated the eddy current losses in the rotor of a two-pole permanent magnet 
motor using three different analytical models. Wang et al. [16] analyzed the eddy current loss characteristics 
of magnetic couplings using two-dimensional finite element simulation and experiment.  
 Golebiowski [17] developed a method for calculating the eddy current loss and hysteresis loss in 
laminated magnetic circuits. Also, the nonlinear magnetization characteristic of iron in the simulations done 
with the developed method. Kumar and Kamdi [18] analyzed the thermal behavior of a finite hollow cylinder 
using the theory of fractional thermoelasticity due to convection-type boundary conditions. Lamba [19] 
explored the memory-dependent thermoelastic response of a cylindrical solid object with radiation-like 
boundary conditions. Using the integral transform technique, Srinivas et al. [20] investigated the effect of point 
heating on temperature variation in multilayered annular circular discs. Biswas [21] introduced magneto-
thermoelastic interaction using a three-phase-lag model of generalized thermoelasticity, adopting the 
eigenfunction expansion approach. Gao et al. [22] investigated and compared the eddy current pulsed 
thermography configurations for the analysis of metallic materials and defects with the traditional line-coil 
configuration. Li et al. [23] introduced a novel approach to the quantitative study of the damage characteristics 
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for the fiber texture of a CFRP-steel structure using transient thermal images. Lotfy et al. [24] studied a one-
dimensional fractional model of a spherical, tiny semiconductor cavity in the presence of a magnetic field and 
initial stresses. Abo-Dahab and Lotfy [25] determined the displacements, stresses, and temperature 
distributions in a rotating fiber-reinforced generalized thermoelastic medium using normal mode analysis. 
Using normal mode analysis, Lotfy [26] investigated a two-dimensional problem of infinite space weakened 
by mode-I crack. Lotfy and Tantawi [27] describe a one-dimensional model of generalized thermoelasticity 
theory in the context of the photothermal transport process of functionally graded material in the presence of 
the initial constant magnetic field. Abo-Dahab et al. [28] examined the surface wave propagation at an 
imperfect boundary between an isotropic elastic layer and isotropic thermodiffusive elastic half-space with 
rotation in the context of Green-Lindsay theory. 
 In the present work, we have studied and analyzed the eddy current loss behavior of hollow circular 
cylinders and the fallout from it. The problem is mathematically described using Maxwell’s equations, and the 
partial differential equation of the magnetic field along with the suitable boundary conditions are obtained. 
The cylinder is assumed to be at zero initial temperature and then gradually heats up due to the consequence 
of Joule heat generated inside the cylinder. It is also assumed that the conducting hollow cylinder is 
nonmagnetic, and the thickness is considered to be minimal as compared to other parameters of the cylinder. 
One of the most suitable integral transforms for convection-type boundary conditions is the Marchi-Zgrablich 
integral transform, and its inversion is used for numerical calculation. The results are obtained theoretically 
using the integral transform techniques [29-33] and have been computed numerically. Eddy current’s impact 
on temperature, displacement, thermal, and magnetic stresses are then illustrated graphically using MATLAB 
software for the case of the time-varying magnetic field as a function of sine function. 
 
2. Formulation of the problem 
 
 Let us assume that a non-magnetic finite hollow circular cylinder with inner and outer radii as a and 
b respectively, as shown in Fig.1, is subjected to a time-varying axial magnetic field starting at time .t 0= This 
magnetic field is assumed to have an arbitrary time history and is expressed as ( ).0H tϕ  Let the components 
of the magnetic field for the conducting cylinder be ( ), , ( , ) .z0 0 H r t  
 

 
 

Fig.1. Geometry of the problem. 
 

Setting aside the displacement current and charge density, the set of Maxwell’s equations and constitutive 
relations for a homogeneous, isotropic conducting cylinder in terms of the cylindrical coordinate system 
( , , ),r zθ  can be written as: 
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  ,BE
t

∂∇× = −
∂

 
 (2.1) 

 
  ,H J∇× =

  
 (2.2) 

 
  ,J E= σ

 
 (2.3) 

 
  ,eB H= μ

 
 (2.4) 

 
where ∇


 is the Hamilton’s operator, B


, H


 and E


 are the magnetic induction intensity, magnetic field 
intensity, and electric field intensity in the conducting cylinder, respectively; σ  is the electrical conductivity; 
and eμ  is the magnetic permeability.  
The axial component of the magnetic flux can be obtained from Eq.(2.4), as: 
 
  ( , ).z e zB H r t= μ  (2.5) 
 
The component of the induced electric field of the conducting cylinder is obtained from Eqs (2.1) and (2.2) as:  
 

  ,( , ) , , .zH1E 0 E 0 0 0
rθ

∂ = = − σ ∂ 


 (2.6) 

 
From Eqs (2.2) and (2.3), the current density components are obtained and read as: 
 

  , ,( , ) ( , ) , , .zHJ 0 J 0 0 E 0 0 0
rθ θ

∂ = = σ = − ∂ 


  (2.7) 

 
For the considered problem, it is assumed that all the field variables are functions of the radial coordinate r  and 
time t  solely. This is because the axis of the cylinder and the z-axis are overlapping, as shown in the figure.  
Due to the cylindrical symmetry of the problem, the component of displacement is a function of radial 
coordinate only and is read as: 
 
  ( , ), .r zu u r t u u 0θ= = =    (2.8) 
 
The considered problem will be treated as one-dimensional, in which all the field variables are independent of 
θ  and .z  To determine the fundamental equation of the magnetic field, we solve Eqs (2.1) and (2.2) together 
with Eqs (2.5) and (2.6) and obtain:  
 

  .
2

z z z
e2

H H Hr r
r tr

∂ ∂ ∂+ = −σμ
∂ ∂∂

  (2.9) 

 
The prescribed boundary and initial conditions are: 
 
  ( , ) ( ),z 0H b t H t= ϕ   (2.10) 
 
  ( , ) .zH b 0 0=   (2.11) 
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Eddy current is another name for the electric current density J


 caused by the temporal fluctuation of the 
magnetic field. This current density generates joule heat, known as the "eddy current loss." It is denoted by 

( , )w r t  and is provided by [7]:  
 

  
[ ]( , )

( , ) .
2J r t

w r t θ=
σ

  (2.12) 

 
 We assume that starting at time ,t 0=  the eddy current loss ( , )w r t  heats the hollow cylinder, which 
started at zero initial temperature. The basic equation of heat conduction, which accounts for eddy current loss, 
along with the boundary and initial conditions, is read as:  
 

  ,1 T w Tr
r r r C t

∂ ∂ ∂ κ + = ∂ ∂ ρ ∂ 
  (2.13) 

 
where , Cκ  denotes thermal conductivity and specific heat of hollow cylinder.  
We assume that the cylinder is at rest initially, therefore the initial boundary conditions are: 
 

  ( ) ( ) .t 0 t 0
t 0

uu T 0
t= =

=

∂ = = = ∂ 
  (2.14) 

 
The boundary conditions are assumed to be of the following form: 

(1) Thermal boundary conditions: 
 

  ,
a r a

1 TT 0
h r =

 ∂− = ∂ 
  (2.15) 

 

  .
b r b

1 TT 0
h r =

 ∂+ = ∂ 
  (2.16) 

 
(2) Mechanical boundary conditions: 

 

  
,

.r r

r a b

u u 1 T
r 1 r 1=

∂ ν + ν   + = α  ∂ − ν − ν  
  (2.17) 

 
Here the heat transfer coefficients at the inner and outer radii are expressed as ah  and bh  respectively.  
The time-varying electromagnetic field and temperature stress caused by Lorentz force and Joule heat are 
experienced by the hollow cylinder and are determined by [13]: 
 
  ( ),eF J B= μ ×

  
 (2.18) 

 
where 𝐽 denotes the current density vector. The Lorentz force components are obtained by using Eqs (2.3) and 
(2.4) and are written as: 
 

  [ ]( , , ) , , .2e
r zF f 0 0 H 0 0

2 r
μ ∂ = = − ∂ 


  (2.19) 
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In the context of magneto-thermoelasticity, the equation of motion taking into account the Lorentz force in the 
radial direction is given by: 
 

  ,
2

rrrr
r 2

uf
r r t

θθσ − σ∂σ ∂+ + = ρ
∂ ∂

  (2.20) 

 
where rf  is the Lorentz force component and ρ  is the mass density.  
The stress-displacement relations accounting for temperature variation due to conducting currents can be 
expressed by the following relations: 
 

  ( ) ,r r
rr

u u2 T
r r

∂σ = μ + λ + λ − β
∂

  (2.21) 

 

  ( ) ,r ru u2 T
r rθθ

∂σ = μ + λ + λ − β
∂

  (2.22) 

 

  ( ) ,z r r
zz

u u u2 T
z r r

∂ ∂ σ = μ + λ + λ − β ∂ ∂ 
   (2.23) 

 
where 𝜎௭௭ is the stress component along the axis of the cylinder, θθσ  is the circumferential stress, T  is the 
cylinder's temperature, and β  represents the thermal moduli. For the one-dimensional symmetric case taken 
into consideration, the strain components are expressed as: 
 

  , , ,r r
rr zz rz r z

u ue e e e e e 0
r rθθ θ θ

∂= = = = = =
∂

 (2.24) 

 

  
( ) ,rr r

rr zz
ruu u 1e e e e

r r r rθθ
∂∂= + + = + =

∂ ∂
 (2.25) 

 

  .
2

r r r r r
2 2

u u u u ue 1
r r r r r rr r

∂ ∂ ∂∂ ∂  = + = + − ∂ ∂ ∂ ∂∂ 
  (2.26) 

 
Using Eqs (2.21-2.23) in Eq.(2.20), the displacement equation of motion can be found as: 
 

  ( ) .
( ) ( ) ( )

2 2
2r r r

r z2 2 2
u u u1 1 T 1u H

r r 2 2 r 2 2 rr r t
∂ ∂ ∂ρ β ∂ μ ∂+ − = + +

∂ μ + λ μ + λ ∂ μ + λ ∂∂ ∂
 (2.27) 

 
Dimensionless variables in the governing equations are always important for theoretical and computational 
purposes. A dimensionless variable is characterized as a ratio between two physical quantities that describes 
the system and the behavior of the system without units of measurement. Using dimensionless variables is 
advantageous as it reduces the amount of experimental data by reducing the number of variables that describe 
the system. The dimensionless variables used in the present work are: 
 

  , , , , , , ,
2

z
z 2 2 2

0 0e 0 e 0

bJHr a t b w C Tr a H J w T
a b H Hb H H

θ
θ

σ γ= = = τ = = = =
μ σ μ

 (2.28) 
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  ( ), , , , , ,r
r rr zz rr zz2 2 2 2

e 0 e 0 e 0 e 0

bf 2 2 2f
H H H Hθθ θθ

 
= σ σ σ = σ σ σ  μ μ μ μ 

 

   (2.28 cont) 

  ( ) ( ) ( )
( )( ), , , .a b a b r r2

e 0

1 E 2h h bh bh u u
1 1 2 b H

− ν
= =

+ ν − ν μ
   

 
Using the above dimensionless variables, the electromagnetic field Eqs (2.9-2.11) are modified and expressed 
in dimensionless form as: 
 

  ,
2

2z z z
2

H H Har r a
rr

∂ ∂ ∂+ = −
∂ ∂τ∂

  (2.29) 

 
  

,
( , ) ( ),z r a b

H r
=

 τ = ϕ τ    (2.30) 

 
  ( , ) .z 0

H r 0
τ=

 τ =    (2.31) 
 
The dimensionless current density and eddy current loss are expressed as: 
 

  ( , ) ,zH1J r
a rθ

∂τ = −
∂

  (2.32) 

 

  ( , ) ( , ) .2w r J rθ τ = τ    (2.33) 
 
The dimensionless temperature field, along with the boundary and initial conditions, is read as: 
 

  ,
2

1 22
1 T T Tw
r r tr

 ∂ ∂ ∂κ + + χ = χ ∂ ∂∂  
  (2.34) 

 

  ,
a r 1

1 TT 0
h r =

 ∂− = ∂ 
 (2.35) 

 

  ,
b r a

1 TT 0
h r =

 ∂+ = ∂ 
  (2.36) 

 
  ( , ) ,

0
T r 0

τ=
 τ =    (2.37) 

 

where , .
2 2

1 2 2
e e

a a
b

γ γχ = χ =
σρμ σμ

  

The dimensionless Lorentz force and stress and displacement components and dimensionless displacement 
equation are expressed as: 
 

  ( ) ( ), , ,2
r z

1f r H r
2 r

∂  τ = − τ ∂
  (2.38) 
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  ( ), ,r r
rr 3

u ur T
r 1 r

∂ νσ τ = + − χ
∂ − ν

 (2.39) 

 

  ( ), ,r r
3

u ur T
r rθθ

∂σ τ = + λ − χ
∂

 (2.40) 

 

  ( ), ,r r
zz 3

u ur T
1 r r

∂ν  σ τ = + − χ − ν ∂ 
 (2.41) 

 

  ( ) ,
2 2

2r r r
r 3 z2 2 2 2

2

u u u1 1 1 Tu H
r r r rr r

∂ ∂ ∂ ∂ ∂+ − = + χ +
∂ ∂ ∂∂ χ ∂τ

 (2.42) 

 

  
,

,r r
3

r 1 a

u u T
r 1 r =

∂ ν + = χ ∂ − ν 
 (2.43) 

 

  ( ) .r
0

0

uu 0τ=
τ=

∂ = = ∂τ 
   (2.44) 

 
3. Integral transforms required for calculation 
 
3.1. Marchi-Zgrablich integral transform (MZT) 
 
 Marchi-Zgrablich integral transform is one of the finite integral transforms, whose kernel is framed 
using the cylindrical functions and is used to solve the problems of heat conduction of circular cylinders with 
convective type boundary conditions on outer and inner surfaces. The finite Marchi-Zgrablich integral 
transform of order p  over the variable r  for ( )f r  in a r b≤ ≤ is defined as [29]: 
 

  ( ) ( ) ( , , ) ,
b

p p m
a

f m rf r S r dr= α β μ   (3.1) 

 
along with the prerequisite boundary conditions: 
 
  [ ]( ) '( ) ,1 2 r af r f r 0=α + α =   (3.2) 
 
  [ ]( ) '( ) ,1 2 r bf r f r 0=β + β =   (3.3) 
 
where 1α  and , ,2 1 2α β β  are the constants involved in the above boundary conditions: 
For the differential equation,  
 

  ''( ) '( ) ( ) ,
2

2
1 pf r f r f r 0
r r

  + − =       
  (3.4) 

 
the finite Marchi-Zgrablich integral transform is given by: 
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( )

( )[ ] ( )[ ]

''( ) '( ) ( ) , ,

, , ( ) '( ) , , ( ) '( ) ( ).

b 2

p m2
a

2
p m p m m pr b r a

1 pf r f r f r S r dr
r r

b aS b f r f r S a f r f r f m= =

   + − α β μ =         

= α β μ + β − α β μ + α − μ
β α


 (3.5) 

 
The inversion of Eq.(3.1) is given by: 
 

  
( )

( )

( ) , ,
( ) ,

, ,

p p m
b

2m 1
p m

a

f m S r
f r

rS r dr

∞

=

α β μ
=

 α β μ 




  (3.6) 

 
where the kernel function ( ), ,p mS rα β μ  can be defined as: 
 
  ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,p m p m p m p m p m p m p mS r J r Y a Y b Y r J a J b   α β μ = μ α μ + β μ − μ α μ + β μ     (3.7) 
 
and ( )pJ rμ  and ( )pY rμ  are Bessel’s function of the first and second kind respectively. 
 
3.2. Finite Hankel transform 
 
 The most appropriate integral transform for solving boundary value problems with axial symmetry, 
which naturally comes in the problems framed in cylindrical coordinates, is the finite Hankel transform. In 
1946, Sneddon [33] was the first to introduce the transform and used it for solving boundary value problems 
with axial symmetry.  
The finite Hankel transform for the variable 𝑟 considered in an interval ( , )a b  is given by [30]: 
 

  { } ( ) ( ) ( ) ( ) ( )( ) ( ) ,
b

i i i i i
a

f r rf r J r G b G r J b dr fμ μ μ μ Η Η = ξ ξ − ξ ξ = ξ   (3.8) 

 
where b a>  and Gμ  is the Bessel function of the second kind defined by the equation: 
 

  ( ) ( ) ( ){ }cos .i1G z ec z J z e J z
2

μπ
μ −μ μ= π μ −  (3.9) 

 
The appropriate inversion formula is given by: 
 

  ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ){ }( ) .
2

i i1 2
i i i i i i2 2

i ii

f J b
f r f 2 J r G a G r J a

J a J b
Η μ−

Η μ μ μ μ
μ μ

ξ ξ
 = Η ξ = ξ ξ ξ − ξ ξ  ξ − ξ  (3.10) 

 
The sum in the above equation is taken over all the positive roots of the equation:  
 
  ( ) ( ) ( ) ( ) .i i i iJ b G a G b J a 0μ μ μ μξ ξ − ξ ξ =   (3.11) 
 
The finite Hankel transform defined in (3.8) satisfies the relation: 
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( )
( )( ) ( ) ( ) .

2 2
i2

i2 2
i

J af 1 f af f a f b
r r b J br r

μ
μ μ

μ

  ξ∂ ∂ μ   Η + − = −ξ Η + −   ∂ ξ∂    
  (3.12) 

 
4. Solutions 
 
4.1. Magnetic field 
 
 The inhomogeneous boundary condition in Eqs (2.30) and (2.31) must first be converted into a 
homogeneous one to compute the magnetic field expression. To do this, we add a new function: 
 
  ( , ) ( , ) ( , ),z zr H r h rϒ τ = τ − τ  (4.1) 
 
where 
 
  ( , ) ( ).zh r τ = ϕ τ   (4.2) 
 
Using Eqs (3.1-3.3) in Eqs (2.29) and (2.31), we obtain: 
 

  cos ,
2

2 2
2 a a

rr
∂ ϒ ∂ϒ ∂ϒ+ + ω ωτ = −

∂ ∂τ∂
  (4.3) 

 
  [ ] ,( , ) ,r a br 0=ϒ τ =  (4.4) 

 
  [ ]( , ) .0r 0τ=ϒ τ =   (4.5) 
 
To solve Eq.(4.3), we apply finite Hankel transform and obtain:  
 

  ( ) ( ) ( ),( ), cos , ,
2 2 2

m2 2
m m 0 m

a b a K r a
2

∂ϒ β τ−β ϒ β τ + ω ωτ β = −
∂τ

 (4.6) 

where  

  ( ) ( ),
, ,0 m

0 m
R r

K r
N

β
β =   (4.7) 

 

  ( ) ( )
( )

( )
( ), ,0 m 0 m

0 m
0 m 0 m

J r Y r
R r

J b Y b
β β

β = −
β β

  (4.8) 

 

  ( ) ( )' ' .
2 2

2 2
0 m 0 m

b aN R b R a
2 2

= β − β   (4.9) 

 
Here mβ represents the positive roots of the below expression:  
 

  ( )
( )

( )
( ) .0 m 0 m

0 m 0 m

J a Y a
J b Y b

β β
−

β β
  (4.10) 
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On employing the finite Hankel transform, the BC & IC are modified to: 
 
  [ ] ,( , ) ,m r a b 0=ϒ β τ =   (4.11) 

 
  [ ]( , ) .m 0 0τ=ϒ β τ =   (4.12) 
 
Applying the Laplace transform and then inverse Laplace transform to Eq.(4.6), we obtain: 
 

  ( ) ( ) ( )( ), , cos .

2
m2 2 u
a

m 0 m
0

a b K r e u du
2

β τ
 
 ω −ϒ β τ = β ω τ −   (4.13) 

 
On applying the inverse Hankel transform to Eq.(4.13), we obtain: 
 

  ( ) ( ) ( )( ), , cos .

2
m2 2 u

2 a
0 m

m 1 0

a br K r e u du
2

β τ∞  
 

=

 
ω −  ϒ τ = β ω τ − 

 
 

    (4.14) 

 
Using Eq.(4.14) in Eq.(4.1), we obtain: 
 

  ( ) ( ) ( ) ( ), ( ) , cos .

2
m2 2 u

2 a
z 0 m

m 1 0

a b
H r K r e u du

2

β τ∞  
 

=

 ω −  τ = ϕ τ + β ω τ − 
 
 

    (4.15) 

 
The above equation represents the dimensionless expression for the magnetic field. Further, using Eq.(4.15) in 
Eq.(2.32) we obtain current density expression in dimensionless form as: 
 

  ( ) ( )
( )( ),

, cos sin .

2
m2 20 m2 2 am

4
m 1 2m

K r1 rJ r a b e
2a a

a

β ∞ τ 
 

θ
=

  ∂     β β     ∂τ = − ω − − ωτ + ω ωτ      β     + ω         

  (4.16) 

 
Using Eq.(4.16) in Eq.(2.33) we obtain the dimensionless expression for eddy current loss as: 

  ( ) ( )
( )( ),

, cos sin .

2
m

2

2 22 0 m22 2 am
2 4

m 1 2m

K r
rw r a b e

a4a
a

β ∞ τ 
 

=

  ∂     β βω      ∂τ = − − ωτ + ω ωτ      β     + ω         

  (4.17) 

4.2. Temperature field  
 
Applying the Laplace transform rule to Eqs (2.34) to (2.37), we obtain: 
 

  ( , ),
2

1 22
1 T T w sT r s
r r r

∗ ∗
∗ ∗ ∂ ∂κ + + χ = χ ∂ ∂  

  (4.18) 
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  ,b
r 1

T h T 0
r

∗
∗

=

 ∂ + =  ∂ 
  (4.19) 

 

  ,a
r a

T h T 0
r

∗
∗

=

 ∂− + =  ∂ 
 (4.20) 

 
  ( , ) .

0
T r 0∗

τ=
 τ =   (4.21) 

 
Applying finite Marchi-Zgrablich integral transform to Eqs (4.18-4.21), we obtain: 
 
  ( , ) ( , ) ( , ),2

n 1 2T n s w n s T n s∗ ∗ ∗−κμ + χ = χ   (4.22) 
 
  ( , ) ,

0
T n s 0∗

τ=
  = 
  (4.23) 

 
where ( , )T n τ  denotes Marchi-Zgrablich transform of ( , )T r τ . The transform parameter is denoted by n , and 

nμ  are the positive roots of the characteristic equation and are read as: 
 
  ( ) ( ) ( ) ( ), , , , .0 0 0 0J 1 a Y 1 b J 1 b Y 1 a 0μ μ − μ μ =  (4.24)  
 
Applying inverse Laplace transform to Eqs (4.21-4.22), we obtain: 
 

  ( , ) ( , ) .

2
n

21

2 0

T n e w n u du

 κμ τ −
 χ χτ = τ −

χ    (4.25) 

 
Applying the inverse Marchi-Zgrablich integral transform, we obtain: 
 

  

( , ) ( , , )

( , ) .

( , , )

2
n

21
p n

2 0

b
2n 1

p n
a

e w n u du S r

T r

r S r dr

 κμ τ −
 χ 

∞

=

 
 χ τ − α β μ χ 
 τ =

 α β μ 








  (4.26) 

 
The kernel function ( , , )p nS rα β μ can be defined as: 
 
  ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,p n p n p n p n p n p n p nS r J r Y a Y b Y r J a J b   α β μ = μ α μ + β μ − μ α μ + β μ     (4.27) 
 
where ( )pJ rμ and ( )pY rμ  are the first and second kinds of Bessel’s function respectively. Eq.(4.26) 
represents the dimensionless expression of the temperature field at every instant and all points of the hollow 
cylinder. 
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4.3. Elastic field  
 
 Neglecting the inertia term from the equation of motion in Eq.(2.42), we obtain: 
 

  ( ) .
2

2r r
r 3 z2 2

u u1 1 Tu H
r r r rr r

∂ ∂ ∂ ∂+ − = χ +
∂ ∂ ∂∂

 (4.28) 

 
Solving Eq.(4.28) and using the boundary conditions given in Eqs (2.43) and (2.44), we obtain: 
 

  ( ) ( )( , ) ( ) .2 2
3 z

1u r r T r H r dr
r

 τ = χ + − ϕ τ     (4.29) 

 
Using Eq.(4.29) in Eqs (2.39-2.41), we derive the quasi-static stress solutions as follows: 
 

  
( ) ( ) ( )

( ) ( )

, ( )

( ) ,

2 2
rr 3 z

2 2
3 z 32

1r r T r H r
r

1 1 2 r T r H r dr T
1r

 σ τ = χ + − ϕ τ −  
− ν   + χ + − ϕ τ − χ    − ν  

 (4.30) 

 

  
( ) ( ) ( )

( ) ( )

, ( )

( ) ,

2 2
3 z2

2 2
3 z 3

1r r T r H r dr
r

r T r H r T
r

θθ
− λ  σ τ = χ + − ϕ τ +  

λ  + χ + − ϕ τ − χ  


 (4.30) 

 

  
( ) ( ) ( )

( ) ( )

, ( )

( ) .

2 2
zz 3 z2

2 2
3 z 3

1 1 2r r T r H r dr
1r

1 r T r H r T
r 1

− ν   σ τ = χ + − ϕ τ +    − ν 
ν   + χ + − ϕ τ − χ    − ν 


 (4.31) 

 
5. Numerical results and discussion  
 
 Figure 1 depicts a conducting hollow circular cylinder composed of aluminum material that is exposed 
to a time-varying electromagnetic field. The function ( )ϕ τ  of time-varying applied magnetic field is defined 
as follows:  
 
  ( ) sin ( ),ϕ τ = ωτ   (5.1) 
 
where 2 fω = π is the angular frequency of the applied magnetic field, which can be calculated from the 
penetration depth of the field using the decay of one Neper (0.368), and is provided by [35]: 
 

  .1
f

δ =
σμπ

 (5.2) 

 
We perform the numerical calculations for aluminum using the analytical results mentioned above; its material 
attributes are provided by [5]: 
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  [ / ], . [ / ],7 7
e 4 10 H m 4 1 10 S m−μ = π× σ = ×     [ / ], [ ],32702 kg m E 72 GPaρ = =  

 
  . , [ ], [ / ],6 1 6 20 3 24 10 K k 97 10 m s− − −ν = α = × = ×     [ / ( )],237 W mKλ =  
 
  [ / ( )],C 903 J kg K=     [ / ( )], . .2

a bh 180 W m K h h 1 0= = =  
 
 Also, we fix the outer radius as . ( )b 0 0001 m= , essential for the convergence of the solution. For 
illustration purposes, we set the radius ratio / . .a a b 0 2= =   
 Figure 2 illustrates how skin depth varies with the frequency of electromagnetic waves for different 
values of magnetic permeability. It demonstrates how skin depth decreases significantly at higher frequencies. 
Thus, eddy current loss or heating can be controlled to any necessary depth of the conductor by varying the 
frequency of the supply. Eddy current loss decreases as we go deeper inside the conductor, and it attains the 
peak value close to the surface due to the phenomenon sometimes known as the "skin effect." It is defined as 
the uneven propagation of electric current across the surface or skin of the current-carrying conductor. The 
skin depth δ  of the magnetic material defines a certain distance to which the strength of the electromagnetic 
field suffers the resistance in the amplitude and it reduces to /1 e  of its original amplitude. This decrease is 
referred to as the decay of one Naper (0.368).  
 

 
 

Fig.2. Variation of skin depth with frequency. 
 

 
 

Fig.3. Variation of magnetic field intensity with time. 
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Fig.4. Variation of induced current with time. 
 
 Figures 3 and 4 show the time variation of the eddy current Jθ and the magnetic field intensity zH at 
the innermost surface ( . ),r 0 4=  inner surface ( . )r 0 6=  and at the outer surface ( ).r 1=  It can be noticed that 
these parameters demonstrate the sinusoidal fluctuation with time. This is due to the arbitrary function ( )ϕ τ  
chosen in terms of sine-profile; see Eq.(5.10).  
 Figure 5 represents the changes in non-dimensional temperature concerning wave frequency and time. 
Due to the influence of electromagnetic waves, the cylinder body first heats up, slowly attains the maximum 
value of temperature, and then moves to a stationary state.  
 

 
 

Fig.5. Variation in temperature due to change in time and wave frequency. 
 
 Figure 6 shows the time variation of non-dimensional temperature at the innermost surface ( . ),r 0 4=  
inner surface ( . )r 0 6=  and at the outer surface ( )r 1=  and it can be seen that the cylinder body heats up 
gradually at the beginning and attains the maximum temperature then after a few seconds, the temperature 
moves steadily. It is observed that the temperature is higher at the outer surface as compared to the inner layers  
This is because, at higher frequencies, the electromagnetic wave can only penetrate near the surface of the 
conductor material. Therefore, the Joule heating effect is dominant at the outer surface, due to which the 
temperature of the cylinder is higher at the outer surface. It can also be concluded from this fact that 
temperature changes always transmit from the surface more slowly compared to eddy currents. Figure 7, 
demonstrates how the eddy current loss changes with the radius of the cylinder and the frequency of the 
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electromagnetic field. It can be observed that eddy current loss increases from ( )r 0=  to ( )r 1= , as the 
frequency of input supply increases, meanwhile, the magnetic flux density remains constant.  

 

 
 

Fig.6. Time variation of non-dimensional temperature. 
 

 
 

Fig.7. Variation of eddy current loss as a function of radius and frequency. 
 

 
 

Fig.8. Variation of eddy current loss as a function of magnetic permeability and frequency. 
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 Figure 8 shows the eddy current loss behavior of a hollow circular cylinder for varying magnetic 
permeability, whereas electrical conductivity is kept constant. It can be seen from the graph that the eddy 
current loss saturation takes place at higher frequencies because of the lower electrical conductivity. Thus, the 
effect of losses due to variation in magnetic permeability is observed to be minimal. 

 

 
 

Fig.9. Time variation of radial stress component along the radius of the cylinder. 
 

 
 

Fig.10. Time variation of circumferential stress component along the radius of the cylinder. 
 

 
 

Fig.11. Time variation of axial stress component along the radius of the cylinder. 
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 Figures 9, 10, and 11 show the time variation of quasistatic behavior of the radial stress component 
rrσ , circumferential stress component θθσ  and axial stress component zzσ  respectively at the innermost 

surface ( . )r 0 4= , inner surface ( . )r 0 6=  and the outer surface ( )r 1= . It can be pointed out that the radial 
stress amplitudes are substantially less than the circumferential and axial stress amplitudes. 
 
6. Conclusion 
 
 In this paper, a one-dimensional problem of magneto-thermo-elasticity under the influence of a time-
varying magnetic field is studied. This specific research works with the quasi-static method in uncoupled 
theory, where the inertia and coupling terms are disregarded in the equation of motion. The problem is 
described mathematically by Maxwell’s equations, and the equations of the magnetic field in terms of a partial 
differential equation along with the suitable boundary conditions are obtained.  
 Since problems with inhomogeneous boundary conditions are not very suited for achieving the desired 
answer in analytical form. In the present article, we have obtained the solutions by using only simple integral 
transformations (finite Hankel transform, finite Marchi-Zgrablich transform and Laplace transform). 
 Finite domains play an essential part in real-life applications. Still, due to the intricacy underlying the 
computations and derivations, relatively limited issues are formulated compared to the infinite domains. 
 Taking a hollow circular cylinder of aluminum as an example, a series of analyses were carried out. 
Numerical results of temperature change and stress distributions with the effect of induced eddy current and 
skin effect are illustrated graphically and are shown in figures with the help of MATLAB software.  
 It was observed that the time-varying electromagnetic field is responsible for the emergence of 
conducting currents, which result in the generation of Joule heat. Convection-type barrier on curved parts of a 
cylinder also impacts the flow of temperature and the stress distribution on headings from inner to outer radii. 
Skin depth varies inversely with the frequency of electromagnetic waves. Thus, eddy current loss or heating 
can be customized to any desired depth of the conductor by changing the frequency of the supply. The eddy 
current loss was found to decrease deeper inside the conductor and was most significant near the surface, which 
indicated the phenomenon known as the "skin effect."  
 The suggested study effort in this research paper and the resulting solution to the examined 
mathematical problem will undoubtedly assist us in the practicality of designing efficient electric machines in 
multiple fields of engineering in terms of reduced magnetic losses such as eddy current loss. 
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Nomenclature  
 
 B


 – magnetic flux density 

 C  – specific heat 
 E


 – electric field intensity 

 rf  – Lorentz force component  
 H


 – magnetic field intensity 

 0H  – reference magnetic field 
 ,a bh h  – heat transfer coefficients 
 J


 – current density 

 ( , )T r t  – temperature 
 , ,r zu u uθ  – displacement components  
 ( , )w r t  – eddy current loss 
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 β  – coefficient of linear thermal expansion  
 δ  – skin depth 
 κ  – thermal conductivity 
 ,λ μ  – lame’s elastic constants  
 eμ  – magnetic permeability  
 ν  – Poisson ratio 
 σ  – electrical conductivity 
 , ,rr zzθθσ σ σ  – stress components 
 ρ  – mass density  
 ( )tϕ  – arbitrary function of time 
 ω  – angular frequency 
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